Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 14(12)2022 12 19.
Article in English | MEDLINE | ID: covidwho-2166926

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused considerable disruption worldwide. For efficient SARS-CoV-2 detection, new methods of rapid, non-invasive sampling are needed. This study aimed to investigate the stability of SARS-CoV-2 in a novel medium for gargle-lavage (GL) self-sampling and to compare the performance of SARS-CoV-2 detection in paired self-collected GL and clinician-obtained nasopharyngeal swab (NPS) samples. The stability study for SARS-CoV-2 preservation in a novel medium was performed over 14 days (4 °C, 24-27 °C, and 37 °C). In total, 494 paired GL and NPS samples were obtained at the University Hospital in Olomouc in April 2021. SARS-CoV-2 detection in paired samples was performed with a SARS-CoV-2 Nucleic Acid Detection Kit (Zybio, Chongqing Municipality, Chongqing, China), an Elecsys® SARS-CoV-2 Antigen assay (Roche Diagnostics, Mannheim, Germany), and a SARS-CoV-2 Antigen ELISA (EUROIMMUN, Lübeck, Germany). The stability study demonstrated excellent SARS-CoV-2 preservation in the novel medium for 14 days. SARS-CoV-2 was detected in 55.7% of NPS samples and 55.7% of GL samples using rRT-PCR, with an overall agreement of 91.9%. The positive percent agreement (PPA) of the rRT-PCR in the GL samples was 92.7%, and the negative percent agreement (NPA) was 90.9%, compared with the NPS samples. The PPA of the rRT-PCR in the NPS and GL samples was 93.2% when all positive tests were used as the reference standard. Both antigen detection assays showed poor sensitivity compared to rRT-PCR (33.2% and 36.0%). rRT-PCR SARS-CoV-2 detection in self-collected GL samples had a similar PPA and NPA to that of NPSs. GL self-sampling offers a suitable and more comfortable alternative for SARS-CoV-2 detection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Therapeutic Irrigation , Reverse Transcriptase Polymerase Chain Reaction , COVID-19 Testing , Sensitivity and Specificity , Nasopharynx
2.
Front Pharmacol ; 13: 893634, 2022.
Article in English | MEDLINE | ID: covidwho-1855410

ABSTRACT

This study presents the very first report on the in vitro antiviral activity of selected essential oils of Lamiaceae plant species and their monoterpenes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nineteen essential oils were obtained by hydrodistillation of dried plant material, and their monoterpene profiles were determined. In addition, the exact concentrations of each monoterpene that were found at a significant level were defined. Both essential oils and their monoterpene components were tested for cytotoxic and antiviral activity against SARS-CoV-2 in infected Vero 76 cells. The results showed that the essential oils of four Mentha species, i.e., M. aquatica L. cv. Veronica, M. pulegium L., M. microphylla K.Koch, and M. x villosa Huds., but also Micromeria thymifolia (Scop.) Fritsch and Ziziphora clinopodioides Lam., and five different monoterpenes, i.e., carvacrol, carvone, 1,8-cineol, menthofuran, and pulegone, inhibited the SARS-CoV-2 replication in the infected cells. However, the antiviral activity varied both among essential oils and monoterpenes. Carvone and carvacrol exhibited moderate antiviral activity with IC50 concentrations of 80.23 ± 6.07 µM and 86.55 ± 12.73 µM, respectively, while the other monoterpenes were less active (IC50 > 100.00 µM). Structure-activity relations of related monoterpenes showed that the presence of keto and hydroxyl groups is associated with the activity of carvone and carvacrol, respectively. Furthermore, the carvone-rich essential oil of M. x villosa had the greatest activity among all active essential oils (IC50 127.00 ± 4.63 ppm) while the other active oils exhibited mild (140 ppm < IC50 < 200 ppm) to weak antiviral activity (IC50 > 200 ppm). Both essential oils and monoterpenes showed limited or no cytotoxicity against Vero 76 cells. Hierarchical cluster analysis showed that the differences in the antiviral activity of essential oils were directly attributed to the antiviral efficacies of their particular single monoterpenes. The findings presented here on the novel antiviral property of plant essential oils and monoterpenes might be used in the development of different measures against SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL